Words of Thanks

A lot of people gave us assistance with this project, and we would of course like to thank them.

Kelly Sasso, Crucial Technology


Our experience: Crucial offers excellent support and quality for barebone servers

William H. Lea, Intel US
Jerry R. Baugh, Intel US
Matty Bakkeren, Intel Netherlands
(www.intel.com)

Brett Jacobs, AMD US
Damon Muzny, AMD US
(www.amd.com)

Bob Cramblitt
Larry D. Gray
(www.spec.org)

Benchmark configuration
Here is the list of the different configurations. All servers have been flashed to the latest BIOS, and unless we add any specific comments to the contrary, the BIOS was set to default settings.

Opteron Socket F 1207 Server 1: Tyan Transport TA26 - 2932
Dual Opteron 2222 3GHz / 2224SE 3.2GHz
Tyan Thunder n3600m (S2932) - NVIDIA nForce Pro 3600 chipset
8GB (4x2GB) Crucial Registered DDR2-667 CL5 ECC
NIC: nForce Pro 3600 integrated MAC with Marvell 88E1121 Gigabit Ethernet PHY

Xeon Server 1: Intel "Bensley platform" server
2x Xeon 5160 3GHz or 2x Xeon E5345 at 2.33GHz
Intel Server Board S5000PSL - Intel 5000P Chipset
8GB (4x2GB) Crucial Registered FB-DIMM DDR2-667 CL5 ECC
NIC: Dual Intel PRO/1000 Server NIC
BIOS comment: Hardware prefetching disabled.

Client Configuration: Dual Opteron 850
MSI K8T Master1-FAR
4x512 MB Infineon PC2700 Registered, ECC
NIC: Broadcom 5705

Software
SUSE Linux SLES SP1 (Linux 2.6.16.46-smp)
MySQL 5.0.26 as shipped with SUSE SLES 10 SP1
SPECjbb2005
Sun Hotspot Java JVM 1.5.0_08
3DSMax 9
Cinebench 9.5
WinRAR 3.61

A Closer Look at AMD's Newest Offering Tyan Transport TA26
Comments Locked

30 Comments

View All Comments

  • piroroadkill - Tuesday, August 7, 2007 - link

    it is a car analogy
  • Gul Westfale - Monday, August 6, 2007 - link

    good analogy there, except that mustangs (and various other cars) use pickup truck engines for cost reasons. large trucks use larger engines (often diesels) because they offer considerably more torque at much lower RPM than a smaller gasoline engine; and thus provide more pulling power.
  • Gul Westfale - Monday, August 6, 2007 - link

    these are not regular consumer cpus, but intended for use in commercial servers and workstations. they and their motherboards cost more because they support features such as multiple sockets (so in addition to having multiple cores on one chip you can also have multiple chips on one motherboard).

  • yyrkoon - Monday, August 6, 2007 - link

    quote:

    Intel has a clear lead in the rendering market. If you are rendering complex high resolutions images, the quad core Xeon is clearly the best choice.


    they win 1 of 2 tests, and it is clear they are the winner ? Why ? Because they won the software rendering also ? Anyone interrested enough in rendering, and HAVING to have this sort of hardware for it is NOT going to bother with software . . .

    This means your conclusion on this point is incorrect, and in which case, it boils down to which application the rendering machine is going to do.

    Man you guys come to the wierdest conclusions based on your own data, and I am not even the first to notice/mention this sort of thing . . .
  • JohanAnandtech - Monday, August 6, 2007 - link

    The Quadcore wins all high resolution rendering tests. Where do you see the DC opterons win against the Quadcore Intel in high resolution rendering? Show me a rendering engine where a 3 GHz K8 DC core is faster in high resolution renderering than a 2.33 GHz Quadcore. All decent and used in the realworld rendering engines will more or less show the same picture.

    In fact, the "rendering performance" situation will get worse for the K8 as SSE-2 tuning will get more common. All Intel CPUs since core and all AMD CPUs since Barcelona will show (or are already showing) high performance boost from using better SSE-2 code.
  • yyrkoon - Monday, August 6, 2007 - link

    Ok, I see now with the graphs 'lower is better' on 3ds max, I missed that with the tables, which is actually what I meant this morning 'table obfustication'. I personally do not mind tables, but when the data is not in a uniform spot, it confuses/makes it harder to read at a glance.

    Anyhow, I was tired when I posted this morning, cranky, and was overly harsh I think. However it *is* much easier for me personaly to read the graphs at a glance (I cannot speak for everyone though).
  • yyrkoon - Monday, August 6, 2007 - link

    Oh, and while on the subject, you guys here at anandtech have lately mastered the art of graph obfustication. Is it really THAT hard leaving items in the same rows / columns for different tests ? Are we trying to confuse the results, or is there some other reason this happens, and has gone completely over my head ?
  • JohanAnandtech - Monday, August 6, 2007 - link

    The only reason is that until very recently I didn't master the graphing engine. I got some weird error messages and gave up. But I have found the error, and you should see some nice graphs which don't obfusticate...
  • Spoelie - Monday, August 6, 2007 - link

    the gif on page 2 is non-looping, so after a very quick jump from 1ghz -> 2.8ghz (why??) -> 3.2ghz , it stays put on the 3.2ghz image. If reading the article, by the time the reader sees the image, it's already 5 minutes on the last image and staying there, making it for all intents and purposes a static image instead of an animated one

    :)
  • JohanAnandtech - Monday, August 6, 2007 - link

    Thanks, fixed that. The reason to show 2.8 GHz is that for example Specjbb and other applications sometimes don't completely stress the CPU and then the cpu dynamically goes back to 2.8 GHz. It are simply the 3 stages I saw the most, and found the most interesting to show.

Log in

Don't have an account? Sign up now