Our New Testing Suite for 2018 and 2019

Spectre and Meltdown Hardened

In order to keep up to date with our testing, we have to update our software every so often to stay relevant. In our updates we typically implement the latest operating system, the latest patches, the latest software revisions, the newest graphics drivers, as well as add new tests or remove old ones. As regular readers will know, our CPU testing revolves an automated test suite, and depending on how the newest software works, the suite either needs to change, be updated, have tests removed, or be rewritten completely. Last time we did a full re-write, it took the best part of a month, including regression testing (testing older processors).

One of the key elements of our testing update for 2018 (and 2019) is the fact that our scripts and systems are designed to be hardened for Spectre and Meltdown. This means making sure that all of our BIOSes are updated with the latest microcode, and all the steps are in place with our operating system with updates. In this case we are using Windows 10 x64 Enterprise 1709 with April security updates which enforces Smeltdown (our combined name) mitigations. Uses might ask why we are not running Windows 10 x64 RS4, the latest major update – this is due to some new features which are giving uneven results. Rather than spend a few weeks learning to disable them, we’re going ahead with RS3 which has been widely used.

Our previous benchmark suite was split into several segments depending on how the test is usually perceived. Our new test suite follows similar lines, and we run the tests based on:

  • Power
  • Memory
  • Office
  • System
  • Render
  • Encoding
  • Web
  • Legacy
  • Integrated Gaming
  • CPU Gaming

Depending on the focus of the review, the order of these benchmarks might change, or some left out of the main review. All of our data will reside in our benchmark database, Bench, for which there is a new ‘CPU 2019’ section for all of our new tests.

Within each section, we will have the following tests:

Power

Our power tests consist of running a substantial workload for every thread in the system, and then probing the power registers on the chip to find out details such as core power, package power, DRAM power, IO power, and per-core power. This all depends on how much information is given by the manufacturer of the chip: sometimes a lot, sometimes not at all.

We are currently running POV-Ray as our main test for Power, as it seems to hit deep into the system and is very consistent. In order to limit the number of cores for power, we use an affinity mask driven from the command line.

Memory

These tests involve disabling all turbo modes in the system, forcing it to run at base frequency, and them implementing both a memory latency checker (Intel’s Memory Latency Checker works equally well for both platforms) and AIDA64 to probe cache bandwidth.

Office

  • Chromium Compile: Windows VC++ Compile of Chrome 56 (same as 2017)
  • PCMark10: Primary data will be the overview results – subtest results will be in Bench
  • 3DMark Physics: We test every physics sub-test for Bench, and report the major ones (new)
  • GeekBench4: By request (new)
  • SYSmark 2018: Recently released by BAPCo, currently automating it into our suite (new, when feasible)

System

  • Application Load: Time to load GIMP 2.10.4 (new)
  • FCAT: Time to process a 90 second ROTR 1440p recording (same as 2017)
  • 3D Particle Movement: Particle distribution test (same as 2017) – we also have AVX2 and AVX512 versions of this, which may be added later
  • Dolphin 5.0: Console emulation test (same as 2017)
  • DigiCortex: Sea Slug Brain simulation (same as 2017)
  • y-Cruncher v0.7.6: Pi calculation with optimized instruction sets for new CPUs (new)
  • Agisoft Photoscan 1.3.3: 2D image to 3D modelling tool (updated)

Render

  • Corona 1.3: Performance renderer for 3dsMax, Cinema4D (same as 2017)
  • Blender 2.79b: Render of bmw27 on CPU (updated to 2.79b)
  • LuxMark v3.1 C++ and OpenCL: Test of different rendering code paths (same as 2017)
  • POV-Ray 3.7.1: Built-in benchmark (updated)
  • CineBench R15: Older Cinema4D test, will likely remain in Bench (same as 2017)

Encoding

  • 7-zip 1805: Built-in benchmark (updated to v1805)
  • WinRAR 5.60b3: Compression test of directory with video and web files (updated to 5.60b3)
  • AES Encryption: In-memory AES performance. Slightly older test. (same as 2017)
  • Handbrake 1.1.0: Logitech C920 1080p60 input file, transcoded into three formats for streaming/storage:
    • 720p60, x264, 6000 kbps CBR, Fast, High Profile
    • 1080p60, x264, 3500 kbps CBR, Faster, Main Profile
    • 1080p60, HEVC, 3500 kbps VBR, Fast, 2-Pass Main Profile

Web

  • WebXPRT3: The latest WebXPRT test (updated)
  • WebXPRT15: Similar to 3, but slightly older. (same as 2017)
  • Speedometer2: Javascript Framework test (new)
  • Google Octane 2.0: Depreciated but popular web test (same as 2017)
  • Mozilla Kraken 1.1: Depreciated but popular web test (same as 2017)

Legacy (same as 2017)

  • 3DPM v1: Older version of 3DPM, very naïve code
  • x264 HD 3.0: Older transcode benchmark
  • Cinebench R11.5 and R10: Representative of different coding methodologies

Scale Up vs Scale Out: Benefits of Automation

One comment we get every now and again is that automation isn’t the best way of testing – there’s a higher barrier to entry, and it limits the tests that can be done. From our perspective, despite taking a little while to program properly (and get it right), automation means we can do several things:

  1. Guarantee consistent breaks between tests for cooldown to occur, rather than variable cooldown times based on ‘if I’m looking at the screen’
  2. It allows us to simultaneously test several systems at once. I currently run five systems in my office (limited by the number of 4K monitors, and space) which means we can process more hardware at the same time
  3. We can leave tests to run overnight, very useful for a deadline
  4. With a good enough script, tests can be added very easily

Our benchmark suite collates all the results and spits out data as the tests are running to a central storage platform, which I can probe mid-run to update data as it comes through. This also acts as a mental check in case any of the data might be abnormal.

We do have one major limitation, and that rests on the side of our gaming tests. We are running multiple tests through one Steam account, some of which (like GTA) are online only. As Steam only lets one system play on an account at once, our gaming script probes Steam’s own APIs to determine if we are ‘online’ or not, and to run offline tests until the account is free to be logged in on that system. Depending on the number of games we test that absolutely require online mode, it can be a bit of a bottleneck.

Benchmark Suite Updates

As always, we do take requests. It helps us understand the workloads that everyone is running and plan accordingly.

A side note on software packages: we have had requests for tests on software such as ANSYS, or other professional grade software. The downside of testing this software is licensing and scale. Most of these companies do not particularly care about us running tests, and state it’s not part of their goals. Others, like Agisoft, are more than willing to help. If you are involved in these software packages, the best way to see us benchmark them is to reach out. We have special versions of software for some of our tests, and if we can get something that works, and relevant to the audience, then we shouldn’t have too much difficulty adding it to the suite.

Test Bed and Setup CPU Performance: System Tests
Comments Locked

101 Comments

View All Comments

  • schujj07 - Thursday, November 29, 2018 - link

    You are missing the entire point of the article. This is a follow-up to how Intel rates TDP for their CPUs. Intel's TDP is for the base clock only and this was to show what the performance would be if they had TDP meaning the absolute max power draw of the CPU. Right now the i9-9900k uses over 160W of power in its out-of-box configuration that most people use. If you buy a CPU cooler that is rated for say 125W thinking you will be covered since it is a "95W" CPU you will not be getting the performance that you are seeing in professional benchmarks. AMD on the other hand has their TDP being the max power draw of the CPU. Exception being the 2700X that hits like 110W in reviews I have seen. Therefore you buy a 125W cooler for the 2700X you will get the performance you are expecting.
  • 4800z - Thursday, November 29, 2018 - link

    The 2700x can't go faster even if you gave it more power and a more expensive cooler. No one has been able to materially overclock the 2700x.
  • Hul8 - Thursday, November 29, 2018 - link

    It's not about OC, but the experience out of the box.

    Out of the box, AMD very closely follows TDP, going over by 5 - 10 W at the most.

    Intel motherboard manufacturers ignore Intel guidelines and allow the CPU to boost ad infinitum (instead of the Intel spec 8 seconds). This means that *out of the box*, a CPU rated 95 W will require a 145 - 160 W cooler when running 100% on all cores, or it will throttle.
  • Hul8 - Thursday, November 29, 2018 - link

    Obviously once you run a i9 9900K at 150 W, you will definitely get much better performance, but that is contingent on good cooling.
  • Targon - Thursday, November 29, 2018 - link

    And you won't get great cooling in a SFF machine.
  • Alexvrb - Friday, November 30, 2018 - link

    That's the main point. The reviews and benches all are testing it on "unlimited", which makes it look better than it actually IS when you're TDP-limited.

    A lesser issue is that when you're NOT TDP limited, it eats a crapton more power, runs hotter, and dumps more heat into your system than you were anticipating based on TDP.

    The cake is a lie. I mean TDP.
  • HStewart - Thursday, November 29, 2018 - link

    I would think that people that overclock a system, would understand that running at higher than base clock means that you need a more powerful power supply - plus they like have external GPU that uses a lot power and in a lot cases more than the CPU itself.
  • Hul8 - Thursday, November 29, 2018 - link

    Problem here is that it's not the user overclocking the system - it's the motherboard with default UEFI settings increasing Tau to (close to) infinity, thereby allowing the CPU to boost for hours.

    Beginners won't even be aware that they're not getting the most of their expensive CPU, since there is no way for them to know to anticipate 145 - 160 W of thermal dissipation.
  • Hul8 - Thursday, November 29, 2018 - link

    ASUS is the only motherboard manufacturer whose Z390 boards can be configured to obey the TDP and even there you first need to enable XMP and then select "Intel" instead of "ASUS" in the prompt that appears. If you don't touch XMP (as many beginners are likely to), you'll run with grossly extended Tau out of the box.
  • HStewart - Thursday, November 29, 2018 - link

    I would expect if the motherboard company is making the settings higher than recommend from processor company - they should inform the customer they recommend larger power. This assumes I understand the entire motherboard settings of desktop machines lately - it been about slight over 10 years since I built a desktop machine and it was a Supermicro Dual Xeon

Log in

Don't have an account? Sign up now